水木
水木
发布于 2024-08-30 / 12 阅读
0

Python量化交易(博文视点出品)

链接: https://pan.baidu.com/s/18VRNDOR7Sq109ZArPgsHAQ?pwd=32na 提取码: 32na

出版社: 电子工业出版社
ISBN:9787121361401
版次:1
商品编码:12610002
品牌:电子工业出版社
包装:平装
开本:16开
出版时间:2019-05-01
用纸:胶版纸
页数:416
字数:414000
正文语种:中文
产品特色

编辑推荐
适读人群 :相对其他量化交易的书,本书不再讲述Python语言编程的大量细节,而将笔墨着重放在量化交易策略的解析、应用与回测之上,这才是新手真正需要学习和实践的地方。本书适合所有对量化交易感兴趣的人员阅读,也适合相关院校和培训机构作为量化交易系统课程的教材。


1 本书仅用一章的篇幅就把量化交易概念、源起和发展用故事的形式介绍了,适合完全不懂量化交易的读者入门。

2 本书再仅用一章的篇幅就把Python在量化交易里用到的基础必用知识全部介绍完了,适合特别了解量化交易但不想学太多程序知识的读者,掌握这一章内容即可进行Python量化交易。

3 本书接下来用一章的篇幅把当下流行的vn.py框架引入进来。

4 接下来,即为本书的精华所在,也是本书价值所在,即各种量化交易策略的介绍、运用、回测等,帮助读者搭建属于自己的量化系统,找到好的产品配比组合。

综上所述:

一、本书内容扎实,针对每一知识点仅呈现必学内容。

二、本书定位清晰,针对量化交易入门者。

三、本书目标鲜明,让读者能够学完本书打造出属于自己的量化交易系统。




内容简介

本书本着能让新手快速上手量化交易的原则,循序渐进地讲解了量化交易入门所需要的知识,以及大量的开发技巧与交易技巧,具有很强的实用性。vn.py是机构级别的量化交易软件,掌握vn.py框架原理并且熟练运用,有利于新手快速搭建属于自己的量化交易系统。Python语言有非常强大的数据分析库,对于交易策略的研发具有天然优势,且其易学性也深受初学者喜爱。本书即以Python+vn.py这一流行组合写作,从量化交易的起源及其发展进程入手,在简单介绍Python量化编程基础,以及详细解析vn.py架构之后,深入且全面地介绍了CTA策略、海龟策略,以及新策略的开发流程。

相对其他量化交易方面的书,本书不再讲述Python语言编程的大量细节,而将笔墨着重放在对量化交易策略的解析、应用与回测之上,这才是新手真正需要学习和实践的地方。本书适合所有对量化交易感兴趣的人员阅读,也适合相关院校和培训机构作为量化交易系统课程的教材。




作者简介

知乎专栏《Python量化之路》作者,受困于早期Python量化交易的学习资料过于零散,把自己在量化交易从入门到应用的踩“坑”经历整理成学习笔记发布到网上,以*简单的CTA策略为着力点,力求拉近学习与实践(即实盘交易)的距离,由浅入深,比较系统而全面地介绍量化交易相关知识,收获了很多初学者的肯定和共鸣。目前就职于上海某金融科技公司,负责策略的研发与API接口的开发。

目录

目 录
第1章 量化交易速览 1
1.1 为何选择量化交易 1
1.1.1 量化交易的概念 1
1.1.2 主观交易与量化交易 2
1.2 量化交易的先驱们 5
1.2.1 朱尔斯・雷格纳特 5
1.2.2 爱德华・索普 6
1.2.3 托马斯・彼得菲 9
1.2.4 詹姆斯・西蒙斯 14
1.3 美国量化投资的发展历史 17
1.3.1 兴起阶段(1970―1990年) 17
1.3.2 快速发展阶段(1990―2000年) 18
1.3.3 稳步增长阶段(2000年至今) 19
1.4 中国量化投资的发展历史 20
1.4.1 ETF套利时代(2010年以前) 20
1.4.2 多因子Alpha和高频交易称雄时代(2010―2015年) 21
1.4.3 多元化投资时代(2016年至今) 23
1.5 国内常用的量化交易策略 24
1.5.1 期货CTA策略 24
1.5.2 股票Alpha策略 32
1.5.3 期权波动率套利策略 41
1.5.4 高频交易策略 45
1.6 宽客 48
1.7 宽客的两大阵形:P宗与Q宗 51
1.8 宽客的3种职能分类 52
1.8.1 量化IT工程师 52
1.8.2 量化研究员 53
1.8.3 量化交易员 54
1.9 宽客的四大派系 55
1.9.1 券商资管 56
1.9.2 公募基金 56
1.9.3 私募基金 57
1.9.4 期货市场 57
第2章 Python量化编程基础 59
2.1 Python运行环境搭建 60
2.1.1 安装Anaconda2-5.0.0(32位) 61
2.1.2 设置Anancoda环境 62
2.1.3 创建共享环境 64
2.1.4 列出共享环境 64
2.1.5 安装Jupyter Notebook 65
2.2 数据 66
2.2.1 字符串 66
2.2.2 数字 67
2.2.3 容器 68
2.2.4 布尔值 73
2.2.5 空值 73
2.3 函数 74
2.3.1 自定义函数 74
2.3.2 第三方库的函数 75
2.4 条件判断 75
2.5 循环 76
2.6 类和实例 79
2.6.1 定义学生父类 79
2.6.2 定义父类实例 81
2.6.3 定义团体子类 82
2.6.4 定义子类实例 83
2.7 NumPy与Pandas 84
2.7.1 一维数组 84
2.7.2 二维数组 88
2.8 scikit-learn机器学习库 92
2.8.1 机器学习的步骤 93
2.8.2 线性回归 94
2.8.3 逻辑回归 100
2.9 Matplotlib绘图库 103
2.9.1 用列表绘制线条 103
2.9.2 用数组绘图 105
2.9.3 多个图的绘制 108
第3章 vn.py入门 109
3.1 vn.py介绍 109
3.2 搭建vn.py运行环境 113
3.2.1 安装Visual Studio 2013社区版(特定版本) 113
3.2.2 安装代码编辑器工具:Sublime Text 114
3.2.3 安装Wing IDE 115
3.2.4 安装MongoDB数据库 115
3.2.5 安装Robo 3T 118
3.2.6 安装vn.py 119
3.2.7 更新vn.py 121
3.3 VnTrader界面功能介绍 122
3.3.1 连接CTP 122
3.3.2 界面说明 123
3.4 vn.py架构 124
3.4.1 底层接口 125
3.4.2 中层引擎 126
3.4.3 上层应用 127
3.5 底层接口 128
3.5.1 CTP API的工作原理 128
3.5.2 CTP API的Python封装设计 133
3.5.3 CTP API对接中层引擎原理 135
3.6 事件引擎 138
3.6.1 时间驱动 138
3.6.2 事件驱动 139
3.6.3 事件引擎工作流程 140
3.6.4 事件引擎结构 141
3.7 上层应用 143
3.7.1 PyQt介绍 143
3.7.2 GUI组件构成 144
第4章 在vn.py中实现CTA策略 147
4.1 数据解决方案 147
4.1.1 CSV加载模块