链接: https://pan.baidu.com/s/1BYJJYQT8T5RUsi0jgSpmQA?pwd=c3ma 提取码: c3ma
出版社: 清华大学出版社
ISBN:9787302647072
版次:1
商品编码:14236202
品牌:清华大学
包装:平装
开本:16开
出版时间:2023-11-01
用纸:胶版纸
产品特色
内容简介
大模型是深度学习自然语言处理皇冠上的一颗明珠,也是当前AI和NLP研究与产业中最重要的方向之一。本书使用PyTorch 2.0作为学习大模型的基本框架,以ChatGLM为例详细讲解大模型的基本理论、算法、程序实现、应用实战以及微调技术,为读者揭示大模型开发技术。本书配套示例源代码、PPT课件。
《从零开始大模型开发与微调:基于PyTorch与ChatGLM》共18章,内容包括人工智能与大模型、PyTorch 2.0深度学习环境搭建、从零开始学习PyTorch 2.0、深度学习基础算法详解、基于PyTorch卷积层的MNIST分类实战、PyTorch数据处理与模型展示、ResNet实战、有趣的词嵌入、基于PyTorch循环神经网络的中文情感分类实战、自然语言处理的编码器、预训练模型BERT、自然语言处理的解码器、强化学习实战、只具有解码器的GPT-2模型、实战训练自己的ChatGPT、开源大模型ChatGLM使用详解、ChatGLM高级定制化应用实战、对ChatGLM进行高级微调。
《从零开始大模型开发与微调:基于PyTorch与ChatGLM》适合PyTorch深度学习初学者、大模型开发初学者、大模型开发人员学习,也适合高等院校人工智能、智能科学与技术、数据科学与大数据技术、计算机科学与技术等专业的师生作为教学参考书。
作者简介
王晓华,高校计算机专业讲师,研究方向为云计算、大数据与人工智能。著有《PyTorch 2.0深度学习从零开始学》《Python机器学习与可视化分析实战》《谷歌JAX深度学习从零开始学》《Spark 3.0大数据分析与挖掘:基于机器学习》《TensorFlow深度学习应用实践》《OpenCV+TensorFlow深度学习与计算机视觉实战》《TensorFlow知识图谱实战》《TensorFlow人脸识别实战》《TensorFlow语音识别实战》《TensorFlow+Keras自然语言处理实战》《TensorFlow 2.0卷积神经网络实战》《Keras实战:基于TensorFlow2.2的深度学习实践》《TensorFlow 2.0深度学习从零开始学》《深度学习的数学原理与实现》。
目录
第1章 新时代的曙光—人工智能与大模型 1
1.1 人工智能:思维与实践的融合 1
1.1.1 人工智能的历史与未来 2
1.1.2 深度学习与人工智能 2
1.1.3 选择PyTorch 2.0实战框架 3
1.2 大模型开启人工智能的新时代 4
1.2.1 大模型带来的变革 4
1.2.2 最强的中文大模型—清华大学ChatGLM介绍 5
1.2.3 近在咫尺的未来—大模型的应用前景 6
1.3 本章小结 7
第2章 PyTorch 2.0深度学习环境搭建 8
2.1 环境搭建1:安装Python 8
2.1.1 Miniconda的下载与安装 8
2.1.2 PyCharm的下载与安装 11
2.1.3 Python代码小练习:计算Softmax函数 14
2.2 环境搭建2:安装PyTorch 2.0 15
2.2.1 Nvidia 10/20/30/40系列显卡选择的GPU版本 15
2.2.2 PyTorch 2.0 GPU Nvidia运行库的安装 15
2.2.3 PyTorch 2.0小练习:Hello PyTorch 18
2.3 生成式模型实战:古诗词的生成 18
2.4 图像降噪:手把手实战第一个深度学习模型 19
2.4.1 MNIST数据集的准备 19
2.4.2 MNIST数据集的特征和标签介绍 21
2.4.3 模型的准备和介绍 22
2.4.4 对目标的逼近—模型的损失函数与优化函数 24
2.4.5 基于深度学习的模型训练 24
2.5 本章小结 26
第3章 从零开始学习PyTorch 2.0 27
3.1 实战MNIST手写体识别 27
3.1.1 数据图像的获取与标签的说明 27
3.1.2 实战基于PyTorch 2.0的手写体识别模型 29
3.1.3 基于Netron库的PyTorch 2.0模型可视化 32
3.2 自定义神经网络框架的基本设计 34
3.2.1 神经网络框架的抽象实现 34
3.2.2 自定义神经网络框架的具体实现 35
3.3 本章小结 43
第4章 一学就会的深度学习基础算法详解 44
4.1 反向传播神经网络的前身历史 44
4.2 反向传播神经网络两个基础算法详解 47
4.2.1 最小二乘法详解 48
4.2.2 梯度下降算法 50
4.2.3 最小二乘法的梯度下降算法及其Python实现 52
4.3 反馈神经网络反向传播算法介绍 58
4.3.1 深度学习基础 58
4.3.2 链式求导法则 59
4.3.3 反馈神经网络的原理与公式推导 60
4.3.4 反馈神经网络原理的激活函数 64
4.3.5 反馈神经网络原理的Python实现 66
4.4 本章小结 70
第5章 基于PyTorch卷积层的MNIST分类实战 71
5.1 卷积运算的基本概念 71
5.1.1 基本卷积运算示例 72
5.1.2 PyTorch中的卷积函数实现详解 73
5.1.3 池化运算 75
5.1.4 Softmax激活函数 77
5.1.5 卷积神经网络的原理 78
5.2 实战:基于卷积的MNIST手写体分类 80
5.2.1 数据的准备 80
5.2.2 模型的设计 81
5.2.3 基于卷积的MNIST分类模型 82
5.3 PyTorch的深度可分离膨胀卷积详解 84
5.3.1 深度可分离卷积的定义 84
5.3.2 深度的定义以及不同计算层待训练参数的比较 86
5.3.3 膨胀卷积详解 87
5.3.4 实战:基于深度可分离膨胀卷积的MNIST手写体识别 87
5.4 本章小结 90
第6章 可视化的PyTorch数据处理与模型展示 91
6.1 用于自定义数据集的torch.utils.data工具箱使用详解 92
6.1.1 使用torch.utils.data. Dataset封装自定义数据集 92
6.1.2 改变数据类型的Dataset类中的transform的使用 93
6.1.3 批量输出数据的DataLoader类详解 98
6.2 实战:基于tensorboardX的训练可视化展示 100
6.2.1 可视化组件tensorboardX的简介与安装 100
6.2.2 tensorboardX可视化组件的使用 100
6.2.3 tensorboardX对模型训练过程的展示 103
6.3 本章小结 105
第7章 ResNet实战 106
7.1 ResNet基础原理与程序设计基础 106
7.1