水木
水木
发布于 2024-07-17 / 12 阅读
0

Python+Office:轻松实现Python办公自动化(博文视点出品)

链接: https://pan.baidu.com/s/1IZme4zqhAFC7-SJgdrx_Kg?pwd=r22v 提取码: r22v

出版社: 电子工业出版社
ISBN:9787121414404
版次:1
商品编码:13353648
品牌:电子工业出版社
包装:平装
开本:16开
出版时间:2021-07-01
用纸:胶版纸
页数:304
字数:383000
正文语种:中文
播放视频
产品特色

编辑推荐

下载案例素材,边学边练

超多实用案例,学以致用

数据处理量更大,文件处理更快,让工作更高效!

Excel数据自动化处理、Word文本自动化处理、PPT自动化制作、邮件自动化处理、文件自动化处理全攻略!





内容简介

《Python+Office:轻松实现Python办公自动化》分为6篇。

第1篇Python编程基础篇,介绍Python语言及开发环境搭建、Python编程基础、利用Python进行数据准备;

第2篇Excel数据自动化处理篇,介绍利用Python进行数据处理、数据分析和数据可视化;

第3篇Word文本自动化处理篇,介绍文本自动化处理、利用Python进行文本自动化处理、利用Python制作企业运营月报Word版;

第4篇幻灯片自动化制作篇,介绍幻灯片自动化制作、利用Python进行幻灯片自动化制作、利用Python制作企业运营月报幻灯片;

第5篇邮件自动化处理篇,介绍利用Python批量发送电子邮件、利用Python获取电子邮件、利用Python自动发送电商会员邮件;

第6篇文件自动化处理篇,介绍利用Python进行文件自动化处理。

《Python+Office:轻松实现Python办公自动化》从实际工作需求的角度,详细介绍了基于Python的办公自动化技术,既可以作为职场人员学习Python办公自动化的自学用书,也可以作为高等院校相关专业学生的参考用书。

作者简介

王国平,具有十余年金融、电力、互联网等行业从业经历,现已出版十余本专著;擅长数据分析、数据可视化、机器学习等,精通Python、SPSS、Tableau、Power BI等数据分析工具,熟悉MySQL、SQL Server等数据库,以及Hadoop、Hive、Zeppelin、Spark等大数据分析及可视化工具。

目录

目录


第1篇 Python编程基础篇

第1章 初识Python语言及开发环境搭建 1
1.1 Python及其优势 2
1.1.1 Python的历史 2
1.1.2 Python的特点 2
1.1.3 Python的优势 3



1.2 搭建Python开发环境 3
1.2.1 安装Anaconda 3
1.2.2 安装Jupyter库 5
1.2.3 库管理工具pip 7
1.3 上机实践题 8



第2章 Python编程基础 9
2.1 Python数据类型 10
2.1.1 数值(Number) 10
2.1.2 字符串(String) 11
2.1.3 列表(List) 13
2.1.4 元组(Tuple) 15
2.1.5 集合(Set) 16
2.1.6 字典(Dictionary) 18



2.2 Python基础语法 20
2.2.1 基础语法:行与缩进 20
2.2.2 条件语句:if及if嵌套 21
2.2.3 循环语句:while与for 22
2.2.4 格式化:format()函数 25



2.3 Python常用高阶函数 26
2.3.1 map()函数:数组迭代 27
2.3.2 reduce()函数:序列累积 28
2.3.3 filter()函数:数值过滤 28
2.3.4 sorted()函数:列表排序 29



2.4 Python编程技巧 30
2.4.1 Tab键自动补全程序 30
2.4.2 多个变量的数值交换 31
2.4.3 列表解析式筛选元素 32
2.4.4 遍历函数 33
2.4.5 split()函数:序列解包 34
2.5 上机实践题 35





第3章 利用Python进行数据准备 36
3.1 数据的读取 37
3.1.1 读取本地离线数据 37
3.1.2 读取Web在线数据 39
3.1.3 读取常用数据库中的数据 39



3.2 数据的索引 41
3.2.1 set_index()函数:创建索引 41


3.2.2 unstack()函数:重构索引 43
3.2.3 swaplevel()函数:调整索引 44



3.3 数据的切片 44
3.3.1 提取一列或多列数据 44
3.3.2 提取一行或多行数据 46
3.3.3 提取指定区域的数据 46



3.4 数据的删除 47
3.4.1 删除一行或多行数据 47
3.4.2 删除一列或多列数据 48
3.4.3 删除指定的列表对象 49



3.5 数据的排序 50
3.5.1 按行索引对数据进行排序 50
3.5.2 按列索引对数据进行排序 51
3.5.3 按一列或多列对数据进行排序 51
3.5.4 按一行或多行对数据进行排序 52



3.6 数据的聚合 52
3.6.1 level参数:指定列聚合数据 52
3.6.2 groupby()函数:分组聚合 53
3.6.3 agg()函数:自定义聚合 54



3.7 数据的透视 55
3.7.1 pivot_table()函数:数据透视 55
3.7.2 crosstab()函数:数据交叉 58



3.8 数据的合并 59
3.8.1 merge()函数:横向合并 59
3.8.2 concat()函数:纵向合并 62



3.9 工作表合并与拆分 63
3.9.1 单个工作簿多个工作表合并 63
3.9.2 多个工作簿单个工作表合并 65
3.9.3 工作表按某一列拆分数据 66
3.10 上机实践题 67

第2篇 Excel数据自动化处理篇



第4章 利用Python进行数据处理 69
4.1 重复值的处理 70
4.1.1 Excel重复值的处理 70
4.1.2 Python重复值的检测 70
4.1.3 Python重复值的处理 71



4.2 缺失值的处理 73
4.2.1 Excel缺失值的处理 73
4.2.2 Python缺失值的检测 73
4.2.3 Python缺失值的处理 74



4.3 异常值的处理 77
4.3.1 Excel异常值的处理 77
4.3.2 Python异常值的检测 77
4.3.3 使用replace()函数处理异常值 78

4.4 Python处理金融数据案例实战 80
4.4.1 读取上证指数股票数据 80
4.4.2 提取2020年8月数据 81
4.4.3 填充非交易日缺失数据 82
4.4.4 使用diff()函数计算数据偏移 83
4.5 上机实践题 84



第5章 利用Python进行数据分析 85
5.1 Python描述性分析 86
5.1.1 平均数及案例 87
5.1.2 中位数及案例 89
5.1.3 方差及案例 89
5.1.4 标准差及案例 90
5.1.5 百分位数及案例 91
5.1.6 变异系数及案例 92
5.1.7 偏度及案例 93
5.1.8 峰度及案